Ellerwiesenweg 3, 21514 Güster Entwässerungstechnische Nachweise

Auftraggeber PSC Immobiliengesellschaft mbH

Ellerwiesenweg 9b 21514 Güster

Verfasser Mirco Schiersch, M. Eng.

Am Prüßsee 38 21514 Güster

Projektnummer 2104-PK

Planungsstand Vorplanung

Einzugsgebiet EW3 Einzugsgebietsfläche A_{E,k} 3430,00 m² Abflusswirksame Fläche A_{u.Ψ} m² $\Psi_{\rm m} = 0.80$ 2755,0 Abflusswirksame Fläche A_{u,s} m² $C_S = 0.95$ 3264,0 Abflusswirksame Fläche A_{u,m} $C_{\rm m} = 0.78$ 2672,0 m² Dachflächenanteil A_{Dach}/A_{ges} 51,6 %

Maßgebliche Regenreihe KOSTRA DWD 2010R, 21514, S. 40 Z. 22

Inhalt

Seite 2 bis 4 Ermittlung der befestigen und unbefestigten Flächen

Seite 5 bis 6 Überflutungsnachweise nach DIN 1986-100

Seite 7 Bemessung von Regenrückhalteräumen nach DWA-A 117

Ellerwiesenweg 3, 21514 Güster Ermittlung der befestigen und unbefestigten Flächen - Einzelflächennachweis

Einzugsgebiet: Proiektnummer:

21.02.2023

EW3 2104-PK

Projektnummer:	2104-PK																				
Art der Befestigung Wasserundurchlässige Flächen Dechflächen	Summe	1	2	e	4	3	9	7	80	6	10	11	12	13	14	15	16	17	18	19	20
Schrägdach: Metall, Glas, Schiefer, Faserzement	922,240	080′569	228,160																		
Schrägdach: Zlegel, Abdichtungsbahnen	828,770	828,770																			
Flachdach mit Neigung bis 3° oder etwa 5 %: z. B. Metall	0000'0																				
Flachdach mit Neigung bis 3° oder etwa 5%: Abdichtung	7,180	4,100	3,080																		
Flachdach mit Neigung bis 3° oder etwa 5%: Kiesschüttung	0000'0																				
Gründach: Extensivbegrünung (> 5")	0,000																				
Gründach: Intensivbegrünung, > 30 cm Aufbaudicke (≤ 5°)	0000'0																				
Gründach: Extensivbegrünung, > 10 cm Aufbaudicke (≤ 5°)	0000'0																				
Gründach: Extensivbegrünung, < 10 cm Aufbaudicke (≤ 5*)	00000																				
Verkehrsflächen																					
Betonflächen	00000																				
Schwarzdecken (Asphalt)	0000'0																				
befestigte Flächen mit Fugendichtung	0,000																				
Rampe mit 'Neigung zum Gebäude	000'0																				
Teildurchlässige Flächen																					
Verkehrsflächen																					
Betonsteinpflaster, in Sand verlegt, Flächen mit Platten	1655,720	21,880	14,630	10,500	8,750	10,000	8,750	19,250	19,000	18,940	15,000	126,000	105,000	80,000	62,500	29,900	27,930 2	26,670	244,580	15,260	791,180
Pflasterflächen, mit Fugenanteil > 15 %,	0,000																				
wassergebundene Flächen	0,000																				
lockerer Kiesbelag, Schotterrasen z. B. Kinderspielplätze	0,000																				
Verbundsteine mit Sickerfugen, Sicker-/Drainsteine	000'0																				
Rasengittersteine (häufige Verkehrsbelas., z. B. Parkplatz)	0,000																				
Rasengittersteine (wenig Verkehrsbelas., z. B. Feuerwehrzu.)	0,000																				
Sportflächen / Intensivbegrünung auf der Tiefgarage																					
Kunststoffflächen, Kunststoffrasen	0000																				
Tennenflächen	0,000																				
Rasenflächen	0,000																				
Intensivbegrünung, > 30 cm Aufbaudicke auf der Tiefgarage	000'0																				
Parkanlagen																					
flaches Gelände	0,000																				
stelles Gelände	0,000																				
Graben	0,000																				
Summe Flächen	3413,910																				

Ellerwiesenweg 3, 21514 Güster

Ermittlung der befestigten und unbefestigten Flächen - Zusammenfassung und Abflussbeiwerte

Einzugsgebiet: EW3 Projektnummer: 2104-PK

Art der Befestigung	Teil- fläche	DWA- M 153	DIN 19	86-100	DWA-M 153	DIN 19	86-100
Art der belestigung	А	Ψ_{m}	Cs	C _m	$A_{u,\Psi}$	Λ [m²]	A _{u,m} [m ²]
	[m²]	[-]	[-]	[-]	[m²]	A _{u,s} [III]	A _{u,m} [III]
Wasserundurc	nlässige Flä	ächen					
Dachf	lächen						
Schrägdach: Metall, Glas, Schiefer, Faserzement	930,0	0,90	1,00	0,90	837,0	930,0	837,0
Schrägdach: Ziegel, Abdichtungsbahnen	830,0	0,80	1,00	0,80	664,0	830,0	664,0
Flachdach mit Neigung bis 3° oder etwa 5 %: z. B. Metall	0,0	0,90	1,00	0,90	0,0	0,0	0,0
Flachdach mit Neigung bis 3° oder etwa 5 %: Abdichtung	10,0	0,90	1,00	0,90	9,0	10,0	9,0
Flachdach mit Neigung bis 3° oder etwa 5 %: Kiesschüttung	0,0	0,70	0,80	0,80	0,0	0,0	0,0
Gründach: Extensivbegrünung (> 5°)	0,0	0,30	0,70	0,40	0,0	0,0	0,0
Gründach: Intensivbegrünung, > 30 cm Aufbaudicke (≤ 5°)	0,0	0,30	0,20	0,10	0,0	0,0	0,0
Gründach: Extensivbegrünung, > 10 cm Aufbaudicke (≤ 5°)	0,0	0,30	0,40	0,20	0,0	0,0	0,0
Gründach: Extensivbegrünung, < 10 cm Aufbaudicke (≤ 5°)	0,0	0,50	0,50	0,30	0,0	0,0	0,0
Verkehrsflächen (Straßen	, Plätze, Ζι	ıfahrten	, Wege)				
Betonflächen	0,0	0,90	1,00	0,90	0,0	0,0	0,0
Schwarzdecken (Asphalt)	0,0	0,90	1,00	0,90	0,0	0,0	0,0
befestigte Flächen mit Fugendichtung	0,0	0,90	1,00	0,80	0,0	0,0	0,0
Rampe mit 'Neigung zum Gebäude	0,0	1,00	1,00	1,00	0,0	0,0	0,0
Teildurchlässige und sch	wach able	itende F	lächen				
Verkehrsflächen (Straßen	, Plätze, Ζι	ıfahrten	, Wege)				
Betonsteinpflaster, in Sand verlegt, Flächen mit Platten	1.660,0	0,75	0,90	0,70	1.245,0	1.494,0	1.162,0
Pflasterflächen, mit Fugenanteil > 15 %,	0,0	0,50	0,70	0,60	0,0	0,0	0,0
wassergebundene Flächen	0,0	0,60	0,90	0,70	0,0	0,0	0,0
lockerer Kiesbelag, Schotterrasen z.B. Kinderspielplätze	0,0	0,30	0,30	0,20	0,0	0,0	0,0
Verbundsteine mit Sickerfugen, Sicker-/Drainsteine	0,0	0,25	0,40	0,25	0,0	0,0	0,0
Rasengittersteine (häufige Verkehrsbelas., z. B. Parkplatz)	0,0	0,15	0,40	0,20	0,0	0,0	0,0
Rasengittersteine (wenig Verkehrsbelas., z. B. Feuerwehrzu.)	0,0	0,15	0,20	0,10	0,0	0,0	0,0
Sportflächen mit Drainung / Inte	nsivbegrür	nung auf	der Tief	garage			
Kunststoffflächen, Kunststoffrasen	0,0	0,30	0,60	0,50	0,0	0,0	0,0
Tennenflächen	0,0	0,40	0,30	0,20	0,0	0,0	0,0
Rasenflächen	0,0	0,30	0,20	0,10	0,0	0,0	0,0
Intensivbegrünung, > 30 cm Aufbaudicke auf der Tiefgarage	0,0	0,30	0,20	0,10	0,0	0,0	0,0
Parkanlagen, Ras	enflächen,	, Gärten					•
flaches Gelände	0,0	0,10	0,20	0,10	0,0	0,0	0,0
steiles Gelände	0,0	0,30	0,30	0,20	0,0	0,0	0,0
Graben	0,0	1,00	1,00	1,00	0,0	0,0	0,0

Ellerwiesenweg 3, 21514 Güster

Ermittlung der befestigten und unbefestigten Flächen - Zusammenfassung und Abflussbeiwerte

Einzugsgebiet: EW3 Projektnummer: 2104-PK

Ergebnisgrößen

Summe Fläche $A_{ges} \triangleq A_{E,k}$	3.430,0	m²
Summe abflusswirksame Fläche A _{u,Ψ}	2.755,0	m²
Summe abflusswirksame Fläche A _{u,s}	3.264,0	m²
Summe abflusswirksame Fläche A _{u,m}	2.672,0	m²
resultierender mittlerer Abflussbeiwert Ψ_{m}	0,80	-
resultierender Spitzenabflussbeiwert C _s	0,95	-
resultierender mittlerer Abflussbeiwert C _m	0,78	-
Summe befestigte Flächen A _{E,b}	3.430,0	m²
Summe abflusswirksame befestigte Flächen $A_{u,E,b} \triangleq A_{u,\Psi}$	2.755,0	m²
Summe abflusswirksame befestigte Flächen A _{u,s,b}	3.264,0	m²
Summe abflusswirksame befestigte Flächen A _{u,m,b}	2.672,0	m²
resultierender mittlerer Abflussbeiwert der befestigten Flächen $\Psi_{\text{m,b}}$	0,80	-
resultierender mittlerer Abflussbeiwert der befestigten Flächen C _{s,b}	0,95	-
resultierender mittlerer Abflussbeiwert der befestigten Flächen C _{m,b}	0,78	-
Summe nicht befestigte Flächen A _{E,nb} [m ²]	0,0	m²
Summe abflusswirksame nicht befestigte Flächen $A_{u,E,nb} \triangleq A_{u,\Psi}$	0,0	m²
Summe abflusswirksame nicht befestigte Flächen A _{u,s,nb}	0,0	m²
Summe abflusswirksame nicht befestigte Flächen A _{u,m,nb}	0,0	m²
resultierender mittlerer Abflussbeiwert der nicht befestigten Flächen $\Psi_{m,nb}$	0,00	-
resultierender mittlerer Abflussbeiwert der nicht befestigten Flächen C _{s,nb}	0,00	-
resultierender mittlerer Abflussbeiwert der nicht befestigten Flächen C _{m,nb}	0,00	-
Summe Gebäudedachfläche A _{dach}	1.770,0	m²
Summe Gebäudedachfläche A _{u,Dach}	1.770,0	m²
Summe Gebäudedachfläche A _{u,m,Dach}	1.510,0	m²
resultierender Spitzenabflussbeiwert Gebäudedachflächen C _{s,Dach}	1,00	-
resultierender mittlerer Abflussbeiwert Gebäudedachflächen C _{m,Dach}	0,85	-
Summe befestigte Flächen außerhalb von Gebäuden A _{FaG}	1.660,0	m²
Summe befestigte Flächen außerhalb von Gebäuden A _{u,s,FaG}	1.494,0	m²
Summe befestigte Flächen außerhalb von Gebäuden A _{u,m,FaG}	1.162,0	m²
resultierender Spitzenabflussbeiwert C _{s,FaG}	0,90	-
resultierender mittlerer Abflussbeiwert C _{m,FaG}	0,70	-
Anteil der Dachfläche A _{Dach} /A _{ges}	51,6	%

Ellerwiesenweg 3, 21514 Güster Überflutungsnachweis nach DIN 1986-100 - Formel 20

Einzugsgebiet: EW3
Projektnummer: 2104-PK

Gewählter Niederschlag nach: KOSTRA DWD 2010R, 21514, S. 40 Z. 22

Klassenfaktor Niederschlagsreihe 1,0

Bemessungsgrundlagen

Gesamte befestigte Fläche des Grundstücks	A _{ges} =	3.430,0	m²
Gesamte Dachfläche der Gebäude	A _{Dach} =	1.770,0	m²
Spitzenabflussbeiwert der Dachflächen	C _{s,Dach} =	1,00	-
Gesamte befestigte Fläche außerhalb von Gebäuden	A _{FaG} =	1.660,0	m²
Spitzenabflussbeiwert der Flächen außerhalb von Gebäuden	C _{s,FaG} =	0,90	-
Maßgebende Regendauer außerhalb von Gebäuden	D =	15	min
Maßgebende Regenspende für D und T = 2 Jahre	r _(D,2) =	125,6	I/(s*ha)
Maßgebende Regenspende für D und T = 30 Jahre	r _(D,30) =	223,3	I/(s*ha)
Konstanter Zufluss	Qzu =	0,00	I/s

Berechnungsergebnisse Formel 20

$$V_{R\ddot{u}ck} = \left(r_{D,30} * A_{ges} - \left(r_{D,2} * A_{Dach} * C_{s,Dach} + r_{D,2} * A_{FaG} * C_{s,FaG}\right) + Q_{Zu}\right) * \frac{D*60}{10000*1000}$$

Zurückzuhaltende Regenwassermenge	$V_{R\"{uck}}$	32,0	m³
Abschätzung der Einstauhöhe auf ebener Fläche	h	0,02	m

Erforderliches Rückhaltevolumen nach Formel 20

32,0 m³

Ergebnisse aus den Berechnungen und Nachweisen nach DIN 1986-100

Erforderliches Rückhaltevolumen aus den Nachweisen nach DIN 1986-100

Der Überflutungsnachweis ergibt: - mit Formel 20 32,0 m³

Erforderliches Rückhaltevolumen 32,0 m³

Nachweis geplantes Regenrückhaltevolumen

		_	
Regenrückhaltung mittels Rigolenfül	lkörper		Verfügbares Regenrückhaltevolumen
Rigole 2-1			136,1 m³
Breite	0,60	m	
Höhe	1,20	m	
Länge	210,00	m	
Speicherkoeffizient	0,90		
Bemessungsdrosselabfluss	0,00	I/s	
Entleerungszeit der Retention:	#DIV/0!	h	

Der Überflutungsnachweis wird erbracht durch Regenrückhaltung in den geplanten Rigolenfüllkörpern.

Ellerwiesenweg 3, 21514 Güster Überflutungsnachweis nach Kommentar DIN 1986-100 - Formel 14-23

Einzugsgebiet: EW3
Projektnummer: 2104-PK

Gewählter Niederschlag nach: KOSTRA DWD 2010R, 21514, S. 40 Z. 22

Klassenfaktor Niederschlagsreihe 1,0

Bemessungsregen n = 0,033 1/a Wiederkehrzeit T = 30 Jahre

Bemessungsgrundlagen

Fläche des kanalisierten Einzugsgebietes - Gesamt	A =	3430,0	m²
Befestigte Fläche	A _{E,b} =	3430,0	m²
Mittlerer Abflussbeiwert der befestigten Fläche	C _{m,b} =	0,78	-
Nicht befestigte Fläche	A _{E,nb} =	0,0	m²
Mittlerer Abflussbeiwert der nicht befestigten Fläche	C _{m,nb} =	0,00	-
Undurchlässige Fläche	$A_u / A_{ges} =$	3430,0	m²
Versickerungsrate (s. Berechnung nach DWA-A 138)	Q _S =	2,52	I/s
Konstanter Zufluss	Qzu =	0,00	I/s

Berechnungsergebnisse

$$V_{R\ddot{u}ck} = \left(\frac{r_{D,30} * A_{ges}}{10000} - Q_S + Q_{zu}\right) * \left(\frac{D * 60}{1000}\right)$$

Dauerstufe D	Konstanter Zufluss	Zugehörige Regenspende	erforderliches Rückhaltevolumen
	Qzu*	r	V_{RRR}
[min]	[l/s]	[l/s*ha]	[m³]
5,0	0,00	360,0	36,3
10,0	0,00	270,0	54,1
15,0	0,00	223,3	66,7
20,0	0,00	192,5	76,2
30,0	0,00	153,9	90,5
45,0	0,00	121,9	106,1
60,0	0,00	102,5	117,5
90,0	0,00	73,7	122,9
120,0	0,00	58,3	125,8
180,0	0,00	41,9	128,0
240,0	0,00	33,2	127,7
360,0	0,00	23,9	122,6
540,0	0,00	17,2	109,5
720,0	0,00	13,6	92,7
1080,0	0,00	9,8	54,5
1440,0	0,00	7,8	13,4
2880,0	0,00	5,1	-133,2
4320,0	0,00	3,9	-306,5
Erforderliches Rückha			128,0 m³

Aufgrund des hohen Anteils der befestigten Flächen wird der Nachweis ebenfalls für das 100-jährliche, 5-minütige Regenereignis geführt.

Unter Ansatz von A = 3430 m² ergibt sich:

onter / model to min or de on or englist siem			
Maßgebende Regendauer	D =	5	min
Maßgebende Regenspende	r _(5,100) =	433,3	I/(s*ha)
Rückhaltevolumen für r _{5,100}	V _{Rück(5,100)} =	43,8	m³

Das größte Rückhaltevolumen ist maßgebend:

 $V_{R\ddot{u}ck} =$

128,0

m³

Ellerwiesenweg 3, 21514 Güster Bemessung einer Rigolenversickerung nach DWA-A 138

Einzugsgebiet: EW3
Projektnummer: 2104-PK

Gewählter Niederschlag nach: KOSTRA DWD 2010R, 21514, S. 40 Z. 22

Klassenfaktor Niederschlagsreihe
Bemessungsregen
n = 0,2 1/a
Wiederkehrzeit
T = 5 Jahre

Bemessungsgrundlagen

2011.00041.8081.41141.8011				
Fläche des kanalisierten Einzugsgebietes		A _{E,k} =	3430,0	m²
Befestigte Fläche		A _{E,b} =	3430,0	m²
Mittlerer Abflussbeiwert der befestigten Fläche		$\Psi_{m,b}$ =	0,80	-
Nicht befestigte Fläche		$A_{E,nb} =$	0,0	m²
Mittlerer Abflussbeiwert der nicht befestigten Fläche		$\Psi_{m,nb}$ =	0,00	-
Undurchlässige Fläche		$A_u =$	2755,0	m²
k _f -Wert anstehender Boden		k _f =	1,00E-4	m/s
Korrekturfaktor kf-Wert zur Bemessung		f _k =	0,2	-
kf-Wert anstehender Boden (gesättigter Boden)	$k_f x f_k$	k _{f,Bem} =	2,00E-5	m/s
kf-Wert anstehender Boden (ungesättigter Boden)	k _{f,Bem} / 2	k _{f,u} =	1,00E-5	m/s
Länge der Rigole		$I_R =$	210,0	m
Breite der Rigole		b _R =	0,6	m
Höhe der Rigole		h _R =	1,2	m
Versickerungswirksame Breite	$b_R + (h_R / 2)$	$b_{R,S} =$	1,2	m
Versickerungsfläche	$I_R \times b_{R,S}$	$A_S =$	252,0	m²
Versickerungsrate	$Q_s = A_s \times k_{f,u}$	$Q_s =$	0,0025	m³/s
Versickerungsrate	$Q_s = A_s \times k_{f,u}$	$Q_s =$	2,52	I/s
Zuschlagsfaktor		f _z =	1,20	-

Berechnungsergebnisse $V = \left[A_u * 10^{-7} * r_{D,n} - \left(b_R + \frac{h_R}{2} \right) * l_R * \frac{k_{f,Bem}}{2} \right] * D * 60 * f_Z$

	L	\ 2 / 2]	
Regendauer	Dauerstufe	Regenspende r	Speicher- volumen V _R
[min bzw. h]	[min]	[l/(s*ha)]	[m³]
5,0 min	5,0	253,3	24,2
10,0 min	10,0	191,7	36,2
15,0 min	15,0	157,8	44,2
20,0 min	20,0	135,8	50,2
30,0 min	30,0	107,2	58,3
45,0 min	45,0	83,3	66,2
60,0 min	60,0	68,9	71,1
90,0 min	90,0	50,0	72,9
2,0 h	120,0	39,9	73,2
3,0 h	180,0	28,9	70,5
4,0 h	240,0	23,1	66,4
6,0 h	360,0	16,8	54,6
9,0 h	540,0	12,2	32,7
12,0 h	720,0	9,7	7,9
18,0 h	1080,0	7,1	-43,9
24,0 h	1440,0	5,6	-101,3
48,0 h	2880,0	3,6	-316,9
72,0 h	4320,0	2,7	-552,5
Erforderliches Rigolenvolumer	ı V _R		73,2 m³

Geplantes Rückhaltevolumen in der Rigole

deplantes Nackhaitevolumen in der Nigole			
Speicherkoeffizient Füllkörperrigole	s _R =	0,9	-
Länge der Rigole	I _R =	210,00	m
Breite der Rigole	b _R =	0,60	m
Höhe der Rigole	h _R =	1,20	m

Geplantes Rückhaltevolumen

136,1 m³